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Abstract
In this paper, we discretize the continuous theory of coherent states on a
general semidirect product group G = V � S, where V is a vector space and
S ⊂ GL(V ) is a semisimple connected Lie group. We show that it is always
possible to construct a discrete frame associated with a unitary irreducible
representation of G, which is square integrable modulo an affine admissible
section. We also prove the converse result that the existence of a discrete frame
associated with a unitary representation U of G, indexed by a homogeneous
space �, implies the square integrability of U on �.

PACS numbers: 02.20.−a, 02.30.Nw

1. Introduction

Let G be a locally compact group and U(g), g ∈ G, be a continuous unitary irreducible
representation (UIR) of G on a (separable, complex) Hilbert space H. The representation
U(g) is said to be square integrable if there exists a nonzero vector η ∈ H satisfying the
admissibility condition∫

G

|〈ηg | η〉|2 dµ(g) < ∞. (1.1)

In that case, the following resolution of the identity holds:∫
G

|ηg〉〈ηg| dµ(g) = I ηg = U(g)η (1.2)

0305-4470/03/4711817+19$30.00 © 2003 IOP Publishing Ltd Printed in the UK 11817

http://stacks.iop.org/ja/36/11817


11818 A L Hohouéto et al

where I is the identity operator on H and µ is the left Haar measure of G. The vector η

is called a (generalized) analysing wavelet and the ηg (generalized) wavelets or coherent
states. For any vector φ ∈ H, the function F(g) = 〈ηg | φ〉 on G, is called the (generalized)
continuous wavelet transform or coherent state transform of φ. If φ denotes a signal, then
writing F(g) in terms of the parameters of G enables one to analyse this signal in terms
of these parameters. The resolution of the identity (1.2) also implies that, given a wavelet
transform F(g), the corresponding signal φ can be reconstructed uniquely. In fact, since the
set of vectors ηg, g ∈ G, is overcomplete in H, it is possible to find a discrete set of points
gi ∈ G, i = 1, 2, . . . , N , where N is generally infinite, such that the following frame condition
holds:

N∑
i=1

∣∣ηgi

〉 〈
ηgi

∣∣ = T (1.3)

where T is a positive, bounded operator on H with bounded inverse. In that case, knowledge
of the values F(gi) = 〈

ηgi
| φ

〉
of the function F at the points gi, i = 1, 2, . . . , N , is enough

to determine the signal φ uniquely. The set {F(gi), i = 1, . . . , N} is called the discretized
wavelet transform of φ and the vectors ηgi

are said to constitute a discrete frame.
It is hardly necessary to emphasize the usefulness of such a discretization. The continuous

wavelet and coherent state transforms have rich theoretical structures and are extremely useful
as tools for building signal transforms, adapted to various signal geometries. But for practical
applications, it is the discretized versions of these transforms which are of greatest value and
this provides the first motivation for the work presented in this paper. The second one comes
from a related paper of Aniello et al [1], who have developed a scheme for the construction
of discrete frames associated with groups of the form G = R

n
� H , with H = R+ × S,

and n ∈ N, where S is a semisimple connected Lie group (these are the so-called wavelet-
type groups). In their construction, the group G is assumed to have a square integrable
unitary irreducible representation, induced from a unitary representation of the stabilizer of
a fixed element k0 of the dual R̂

n � R
n of R

n. The element k0 is assumed to have an orbit
O∗ of positive Lebesgue measure in R

n. One then looks at the coherent state transform
arising from this representation and discretizes it to obtain discrete frames. For the general
sort of groups in which we are interested here, the corresponding induced representations
are not square integrable with respect to the entire group. So we adopt the more general
concept of square integrability modulo a subgroup and a section defined below (see [2] for an
exhaustive discussion). Our main result is that the coherent state transform arising from such
representations is again discretizable and one can again obtain discrete frames. A converse
of this result also holds, namely, if one assumes the existence of a frame in this sense, then
the corresponding representation is square integrable modulo a subgroup and a section. This
generalizes a similar result in [3]. Analogous results were proved in an earlier paper [4] for
the special case of the Poincaré group.

As in most treatments of this nature found in the literature, our analysis hinges on the
existence of lattices in Lie groups. Given a locally compact topological group G and a closed
subgroup X of G, X is said to be uniform (or co-compact) if the space G/X is compact. If X
is discrete and G/X has an invariant finite measure, X is called a lattice. Then the key result
is the following theorem, due to Borel [5].

Theorem 1.1 (Borel). Let G be a semisimple connected Lie group. Then, G contains both
uniform and nonuniform lattices.

In fact, it is always possible to generate a discrete frame for semisimple Lie groups with a
square integrable UIR if a frame generator (in the sense of [6]) can be identified. The frame
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generator is a pair, consisting of a separated subset X of the group H and a compact subset
Q of O∗, such that O∗ can be decomposed as the union of the translates of Q by elements
of the separated set. Here a subset X of G is said to be separated if there exists a (compact)
neighbourhood V of the identity in G such that

xV ∩ yV = ∅ ∀x, y ∈ X x �= y.

X is also called a V -separated subset [7]. In the terminology of the latter reference, a family
XI = {xi : i ∈ I ⊂ N} of G is said to be relatively separated if it is the union of V -separated
subsets. Moreover, we have the following characterization, on which the construction of
discrete frames is based.

Lemma 1.2. The following properties of XI in G are equivalent:

1. The family XI = {xi : i ∈ I ⊂ N} is relatively separated.
2. For all compact sets K ⊂ G, there exists a finite partition of the set of labels

I, I = ⋃d
r=1 Ir , such that each family {xiK : i ∈ Ir} consists of pairwise disjoint

sets. Conversely, any relatively separated family can be obtained in this way.
3. Given a relatively compact set W with nonempty interior, we have

sup
i∈I

{#{j : xjW ∩ xiW �= ∅}} < ∞.

Actually, the ideas described above were already contained in the paper of Bohnké [8].
However, Aniello et al [1] were the first to provide a more systematic construction of this sort.
Their construction is based on some simple topological results and indicates (with the help of
the Borel theorem) a way to find the separated subset of the frame generator. Their method
was successfully adapted to the Poincaré group P↑

+ (1, 3) = R
4
1,3 �SL(2, C) in [9]. This result

suggests that it should be possible to extend the construction to an abstract semidirect product
group, including groups of the same type which do not contain dilation subgroups. This is the
case with most of the relativity groups used in the physical literature.

In this paper, we are also interested in the converse problem, which can be stated as
follows: given a group G of the semidirect product type, and a (discrete) frame in the carrier
space associated with a unitary irreducible representation U of G, does the existence of such
a frame guarantee the square integrability of U? The answer to this question is yes when the
frame is indexed by elements of G [3]. We show in this paper that it is still yes when the label
space is a homogeneous space � = G/H of the group.

The rest of this paper is organized as follows. In sections 2 and 3, respectively, we briefly
review the continuous theory of coherent states on general semidirect product groups, and
Aniello et al’s results on wavelet-type groups. In section 4, we first prove that the existence
of a discrete frame, labelled by a homogeneous space and associated with a unitary
representation of the group, implies the square integrability of the representation modulo
a section. Then we present an explicit construction of discrete lattices of coherent states. As
an example, we apply the method to the Euclidean group in two dimensions. We end the paper
by some remarks.

2. Coherent states of general semidirect product groups revisited

Let V be a vector space and S be a subgroup of GL(V ), the linear group of V . Define an
action of S on V by left translation, that is, a map S × V → V , (s, x) �→ sx, and form the
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group

G = V � S = {g = (x, s) : x ∈ V, s ∈ S} (2.1)

with the multiplication law

(x, s)(x ′, s ′) = (x + sx ′, ss ′) (x, s)(x ′, s ′) ∈ G. (2.2)

Most of the interesting groups encountered in the physics literature are of this form. Well-
known examples are the connected affine group R � R

∗
+ (also called the ‘ax + b’ group),

the similitude group SIM(n) = R
n

� (R∗
+ × SO(n)), the Euclidean group in n dimensions

E(n) = R
n
� SO(n), the full Poincaré group P↑

+ (1, 3) = R
4
1,3 � SL(2, C) and so on. In what

follows, to be as general as possible, we will assume that the UIR used to build coherent states
is not square integrable on the whole group, but modulo a subgroup H and a section [2]. The
resulting coherent states are then labelled by points living in the quotient space G/H , which
has the structure of a phase space.

2.1. A natural phase space

Let V ∗ denote the dual of V . The dual action of S on V ∗ is taken to be the map S ×V ∗ → V ∗,
(s, k) �→ s[k], defined by

〈s[k], x〉 = 〈k, s−1x〉 ∀x ∈ V (2.3)

where 〈., .〉 : V ∗ × V → R is the duality pairing. Fix k0 ∈ V ∗. The orbit of k0 under this
action is denoted by Ok0 ≡ O∗ and its stabilizer by S0. O∗ is isomorphic to S/S0 and, as a
manifold, it is assumed to be of dimension m, in general lower than n = dimV ∗. For any
k ∈ O∗, let TkO∗ ≡ V ∗

k and T ∗
k O∗ ≡ Vk denote the tangent and the cotangent spaces of O∗ in

k, respectively. Define the annihilator of V ∗
k in V by

Nk = {x ∈ V : 〈p, x〉 = 0,∀p ∈ V ∗
k } (2.4)

and that of Vk in V ∗ by

N∗
k = {p ∈ V ∗ : 〈p, x〉 = 0,∀x ∈ Vk}. (2.5)

It is well known that V = Vk ⊕ Nk and V ∗ = V ∗
k ⊕ N∗

k , for all k ∈ O∗. Set V0 = Vk0 ,

N0 = Nk0 , V
∗

0 = V ∗
k0

and N∗
0 = N∗

k0
. It can be easily proved [2] that the restriction of the dual

action S × V ∗ → V ∗ to S0 × V ∗ → V ∗ leaves O∗ globally invariant, as does its push forward
to V ∗

0 . By duality, N0 is also left invariant. One can then form the subgroup H0 = N0 � S0 of
G and define the quotient space � = G/H0. As a Borel space, � is isomorphic to V0 ×O∗. On
the other hand, explicit computations [2] show that it is isomorphic, as a symplectic manifold,
to the cotangent bundle T ∗O∗ = ⋃

k∈O∗ Vk of O∗, making it a natural phase space.

2.2. Coherent states and continuous frames

Here we briefly review the general construction of coherent states on semidirect product
groups. Details can be found in [2].

In the general setting, the group has no square integrable UIR in the usual sense,
but only a square integrable UIR modulo a closed subgroup H and an admissible section
σ : � = G/H → G, where � is assumed to carry an invariant measure µ. If H is the
stabilizer of an element of V ∗, the group admits a square integrable representation and the
Gilmore–Perelomov method of construction of coherent states applies [10, 11].
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Turning now to the problem of choosing a section, let σ : O∗ → S denote a global Borel
section such that

σ(k0) = e

σ (k)[k0] = k ∀k ∈ O∗ (2.6)

and assume that there exists an open dense subset O of O∗ on which σ is C∞. This implies
that

• for all s in S, there exists k in O∗ and s0 in S0 such that s = σ(k)s0,
• σ(k)−1vk ∈ V0 for all k in O∗ and vk ∈ Vk .

From σ , a particular choice of section is given by the principal section σpr : � � V0×O∗ → G,

σpr(q, p) = (σ (p)q, σ (p)) (q, p) ∈ �. (2.7)

In view of the decomposition

(x, s) = (nk + vk, σ (k)s0) = (vk, σ (k))(σ (k)−1nk, s0) (2.8)

of any element of G into the product of a representative of its class modulo H0 = N0 � S0 and
an element of H0, any other section σ̂ : � → G is given by

σ̂ (q, p) = σpr(q, p)(n(q, p), s0(q, p)) ≡ (q̂ ,�(p)) (q, p) ∈ � (2.9)

where n : V0 × O∗ → N0 and s0 : V0 × O∗ → S0 are Borel functions. The function n is
chosen affine in q, namely,

n(q, p) = θ(p)q + ϕ(p) (2.10)

where θ : O∗ → L(V ) (the vector space of linear transformations of V ) and ϕ : O∗ → N0 are
C∞ on O and Ker θ = Ran θ = N0. The point s0 is assumed to be a function of p only, that is,

s0(q, p) = s0(p) ∀q ∈ V0 (2.11)

and is also C∞ on O. These so-called affine sections must verify additional conditions before
being suitable for the construction of coherent states. For specifying them, we need to define
a local chart around k0.

Let {eκ, κ = 1, . . . , n} be a basis of V such that {eκ, κ = 1, . . . , m} is a basis of V0 and
let {e∗

κ , κ = 1, . . . , n} be the dual basis in V ∗, {e∗
κ , κ = 1, . . . , m} being a basis of V ∗

0 . It is
always possible to find an open set Ok0 ⊂ O∗, containing k0, such that the map ψ : Ok0 → R

m

defined by

ψ(k)κ ≡ kκ = 〈k − k0, eκ〉 κ = 1, . . . , m (2.12)

is a diffeomorphism. Using this local chart, any element k in Ok0 has the expansion

k =
m∑

κ=1

(kκ + ακ) + n∗
k (2.13)

with

ακ = 〈k0, eκ〉 κ = 1, . . . , m and n∗
k ∈ N∗

0

and is completely determined by the kκ . Taking any q = ∑m
κ=1 qκeκ in V0, we have

〈k, q〉 =
m∑

κ=1

(kκ + ακ)q
κ . (2.14)

With this system of coordinates, the affine section σ̂ is said to be admissible if

(a) ∀p ∈ O∗ F(p)∗
(
Ok0

) ⊂ Ok0 (2.15)
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(b) I(p, k) ≡ det JF(p)∗�Ok0 �= 0 p ∈ O∗ k ∈ Ok0 (2.16)

where F(p)∗ is the adjoint of the map F(p) ≡ IV + θ(p) which appears in the explicit
expression for σ̂ (q, p) and JF(p)∗�Ok0 is the Jacobian matrix of F(p)∗ restricted to Ok0 . The
class SA of the affine admissible sections is invariant under the action of G, in the sense that,
if σ̂ is an affine admissible section, then so is the section σ̂ ′ defined by

σ̂ ′(q, p) = gσ(g−1 · (q, p)) ∀g ∈ G.

To determine the measure on �, we use the fact that the cotangent bundle T ∗O∗ of
O∗ comes equipped with a nondegenerate 2-form �, invariant under the group action. An
invariant measure on T ∗O∗ can be built as follows. Consider a local chart (O,ψ) of O∗, p
being a point in O∗ and {pκ = ψ(p)κ, κ = 1, . . . , m} ⊂ R being its local coordinates. Let
{∂/∂pκ, κ = 1, . . . , m} be a basis of V ∗

p and {dpκ, κ = 1, . . . , m} be the dual basis in Vp. Let
vp = ∑m

κ=1 vκ
p dpκ

(
vκ

p ∈ R,∀κ
)

be an element of Vp. The 2-form � is explicitly

� =
m∑

κ=1

dvκ
p ∧ dpκ

and the associated invariant measure is

dω = dv1
p ∧ · · · ∧ dvm

p ∧ dp1 ∧ · · · ∧ dpm = dvp ∧ dp.

This measure in turn determines an invariant measure on � via the inverse of the Borel
isomorphism c : V0 × O∗ → T ∗O∗,

c(q, p) = (σ (p)q, p) ≡ (vp, p) (vp ∈ Vp).

To this end, let dq be the Lebesgue measure on V0 and assume that O∗ has an invariant measure
ν under S. Then,

dvp = f (p) dq f (p) = |det[σ(p)−1�Vp]|−1r(p)

dν(p) = m(p) dp

where r and m are smooth measurable functions on O∗ which are positive and nonzero on O.
The invariant measure ω of T ∗O∗ transforms locally on O under c into the measure on �,

dµ(q, p) = f (p)

m(p)
dq dν(p).

Hence, the invariant measure on � is taken (globally) to be of the form

dµ(q, p) = ρ(p) dq dν(p)

where ρ(p) is a measurable function that is positive and nonzero ν almost everywhere.
Finally, let U be the UIR of G induced from a unitary character χ of V and a UIR L of S0

in a Hilbert space K of dimension N. U is defined on the Hilbert space H = K ⊗ L2(O∗, dν)

by

(U(x, s)φ)(k) = ei〈k,x〉L(h0(s
−1, k)−1)φ(s−1[k]) h0(s, k) = σ(s[k])−1sσ (k). (2.17)

Consider next a set of vectors {ηj , j = 1, . . . , N} ⊂ H, which are smooth functions on O∗

having their supports contained in Ok0 and satisfying the following invariance condition under
S0:

U(0, s)FU(0, s)† = F ∀s ∈ S0 where F =
N∑

j=1

|ηj 〉〈ηj |. (2.18)
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Given an affine admissible section σ̂ , we finally define the set of coherent states

Sσ̂ = {
η

j

σ̂ (q,p) ≡ U(σ̂ (q, p))ηj : j = 1, . . . , N; (q, p) ∈ �
}
.

One can verify [2] that the representation U is square integrable mod(H0, σ̂ ) and that the
operator

Aσ̂ =
N∑

j=1

∫
�

dµ(q, p)
∣∣ηj

σ̂ (q,p)

〉〈
η

j

σ̂ (q,p)

∣∣
defines a rank-N (continuous) frame if and only if there exist two real numbers A and B such
that

0 < A � (2π)m
N∑

j=1

∫
O∗

‖ηj (σ (p)−1[k])‖2
K

m(σ(p)−1[k])

|I(p, k)| ρ(p) dν(p) � B < ∞.

3. Discrete frames, square integrability and wavelet groups

For the case of groups which are semidirect products of R
n and a unimodular group, say,

G = R
n

� H , with H = R
∗
+ × S, where S is a semisimple connected Lie group, Aniello et al

[1, 3] have obtained two interesting results.
First, they have established that the existence of a discrete frame associated to a unitary

representation U of G implies the square integrability of the representation, in the sense that
the function g �→ 〈φ,U(g)ψ〉 belongs to L2(G,µG). Note that the representation U is not
supposed to be irreducible. Their result, which applies typically to wavelet groups, can be
summarized in the following proposition.

Proposition 3.1. Let {xl, l ∈ Z
n} be a maximal discrete subgroup of R

n, generated by a basis
{ei, i = 1, . . . , n} of R

n, M(ei) be the matrix having the ei as its rows and D = |det M(ei)|−1.
Let {hj , j ∈ J } be an at most countable set in H, and ψ be a vector in H such that
{U(hjxl, hj )ψ : l ∈ Z

m, j ∈ J } is a frame. Then,

1. If there is a compact set K ⊂ H such that
⋃

j∈J h−1
j K = H , then U is a square integrable

cyclic representation of G, and ψ is an admissible vector for U. Moreover, there exists
β > 0 such that∫

G

|〈φ,U(g)ψ〉|2 dµG(g) � βD−1µH (K)‖φ‖2 ∀φ ∈ H. (3.1)

2. If C is a compact subset of H such that there exists a finite partition {J1, . . . , JN } of J

satisfying, for any p = 1, . . . , N , the condition

i, j ∈ Jp ⇒ h−1
i C ∩ h−1

j C = ∅
then, there exists α > 0 such that

αN−1D−1µH (C)‖φ‖2 �
∫

G

|〈φ,U(g)ψ〉|2 dµG(g) ∀φ ∈ H. (3.2)

Obviously, inequality (3.2) is interesting only if µH (C) > 0, and U is square integrable.
On the other hand, sufficient conditions for the existence of compact subsets of H satisfying
the hypothesis of this proposition is assured by the Borel theorem and the following simple
topological result [1].

Lemma 3.2

1. There exists a discrete subgroup XI = {sτ : τ ∈ I ⊂ N} ⊂ S and a compact Q ⊂ O∗

such that O∗ = ⋃
τ∈I sτ [Q].



11824 A L Hohouéto et al

2. For all compact Q ⊂ O∗, there exists a finite partition {Xr , r = 1, . . . , d} of XI such that
s ′, s ′′ ∈ Xr ⇒ s ′[Q] ∩ s ′′[Q] = ∅.

3. For any open nonvoid subset � of O∗, there exists a finite subset {sν, ν = 0, . . . , N0} ⊂ S

such that O∗ = ⋃
τ∈I

⋃N0
ν=0 sτ sν[�].

The second result of [1], which also relies on the same lemma, reads as follows. Given a
UIR U of G, induced from a UIR L of a compact subgroup S0 ⊂ S, in the Hilbert space K, there
exists in the representation space of U a discrete frame associated with it. The construction is
based on the realization

(U(x, h)f )(k) = |det h|1/2 ei〈k,x〉L(h, k)f (h−1[k]) f ∈ K ⊗ L2(O∗, dν).

Here

L(h, k) = L(c(k)−1hc(h−1[k]))

where c : O∗ → H is a section for the action of H on O∗, which is assumed to be locally
continuous around k0. Taking a cyclic vector v in K, there exists {si, i = 1, . . . , N} ⊂ S0 and
a closed ball B ⊂ O∗ centred in k0 such that

α‖f ‖2
K �

N∑
i=1

|〈L(si, k)v, f 〉K|2 � β‖f ‖2
K ∀f ∈ K and k ∈ B

where α, β are two positive numbers. Considering then the closed ballB, the discrete subgroup
X of lemma 3.2, an open subset Y of O∗ such that k0 ∈ si[Y] ⊂ B for all i = 1, . . . , N and
the set X = ⋂N

i=1 si[Y], there exists a finite family {hj , j = 1, . . . , M} ⊂ H such that

O∗ =
⋃
h∈X

M⋃
j=1

hhj [X].

Define finally, for ψ ∈ K ⊗ L2(O∗, dν), the vector

ψ(k) = vχY (k) k ∈ O∗

where χY is the characteristic function of the set Y . Then, for h ∈ X , 1 � j � M, 1 �
i � N, xl = 2πl ∈ R

n, (l ∈ Z
n), the countable set of vectors ψh,j,i,l = U(hhj sixl, hhj si)ψ

constitutes a frame in K ⊗ L2(O∗, dν).

4. Extension to an abstract semidirect product group

In this section we extend the results of Aniello et al to an abstract semidirect product group
G = V � S as defined in section 2. We first prove that the existence of a discrete frame
indexed by a homogeneous space � = G/H in the carrier space of a unitary representation U
of G implies the square integrability of U on � (or modulo a section). Next, we show that it is
always possible to build a discrete frame indexed by such a homogeneous space, using a UIR
of G induced from a finite dimensional UIR of a closed subgroup.

4.1. Homogeneous spaces, frames and square integrability

Let G, k0, V0, S0,H0, �,O∗, σ , σpr and σ̂ be as in section 2. Let U be a unitary representation
of G in a Hilbert space H. Consider a lattice {ql, l ∈ Z

m} in V0, a discrete subset
{pn, n ∈ J ⊂ N} of O∗ containing k0, and assume there exists a set {ηj , j = 1, . . . , N}
of linearly independent vectors in H such that

{
η

j

l,n ≡ U(σpr(−ql, pn))η
j : l ∈ Z

m; n ∈ N;
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j = 1, . . . , N
}

is a frame. Assume now the frame condition, that is, there exist two real
numbers 0 < A � B < ∞ such that, for all φ ∈ H,

A‖φ‖2 �
N∑

j=1

∑
l∈Z

m

∑
n∈J

∣∣〈ηj

l,n, φ
〉∣∣2 � B‖φ‖2. (4.1)

Proposition 4.1. For every φ in H, the function (q, p) �→ |〈U(σpr(q, p))ηj , φ〉| is in L2(�, µ).

Proof. Using the frame condition (4.1), we have that, for all (q, p) in �, and all φ in H,

A‖φ‖2 �
∑
j,l,n

∣∣〈ηj

l,n, U(σpr(q, p)−1)φ
〉∣∣2 � B‖φ‖2. (4.2)

For any nonnegative function g ∈ L1(�, µ), we can write

A‖g‖1‖φ‖2 �
∫

�

dµ(q, p)g(q, p)
∑
j,l,n

|〈ηj , U(σpr(−ql, pn)
−1σpr(q, p)−1)φ〉|2

� B‖g‖1‖φ‖2. (4.3)

Applying the monotone convergence theorem to the integral, considering the term in k0 (which
corresponds to an index n0) and using the group law, we obtain that

In0 =
∑
j,l

∫
�

dµ(q, p)g(q, p)|〈ηj , U(−q + ql, σ (p)−1)φ〉|2 � B‖g‖1‖φ‖2. (4.4)

The change of variables q �→ q + ql , together with the invariance under translations of the
(Lebesgue) measure dq on V0, gives

In0 =
∑
j,l

∫
�

dµ(q, p)g(q + ql, p)|〈ηj , U(−q, σ (p)−1)φ〉|2

=
∑

j

∫
�

dµ(q, p)
∑

l

g(q + ql, p)|〈U(σpr(q, p))ηj , φ〉|2. (4.5)

Consider now a function � ∈ Cc(V0), the space of compactly supported continuous functions
on V0, such that

� � 0 and
∫
V0

dq �(q) = 1.

Let K be compact subset of O∗, and, for all α in N, define the function gα : � → R+ by

gα(q, p) = 1

αm
�

(
1

α
ρ(p)q

)
χK(p). (4.6)

We have that gα ∈ L1(�, µ), and ‖gα‖ = ν(K). Replacing g by gα in (4.5), In0 becomes

In0 = In0,α =
∑

j

∫
�

dµ(q, p)Sα(q, p)χK(p)|〈U(σpr(q, p))ηj , φ〉|2 (4.7)

with

Sα(q, p) = 1

αm

∑
l∈Z

m

�

(
1

α
ρ(p)[q + ql]

)
. (4.8)

Since � is compactly supported and continuous, the restriction of Sα to any compact subset
of � is a finite sum of continuous terms, hence it is continuous. Moreover, we have

lim
α→∞ Sα(q, p) = D

∫
V0

dq �(ρ(p)q) = Dρ(p)−1. (4.9)
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Let {ei, i = 1, . . . , m} be a basis of V0 generating the lattice {ql, l ∈ Z
m}, and M(ei) be the

matrix having the ei as its rows, D = |det M(ei)|−1. Application of Fatou’s lemma to (4.7)
now gives ∑

j

∫
�

dµ(q, p)Dρ(p)−1χK(p)|〈U(σpr(q, p))ηj , φ〉|2 � Bν(K)‖φ‖2.

Taking the infimum of the positive function ρ−1 over the compact set K in the l.h.s. of this
inequality, we obtain

D inf
K

ρ(p)−1
∑

j

∫
�

dµ(q, p)|〈U(σpr(q, p))ηj , φ〉|2 � Bν(K)‖φ‖2

or ∑
j

∫
�

dµ(q, p)|〈U(σpr(q, p))ηj , φ〉|2 � Bν(K)

D inf
K

ρ(p)−1 ‖φ‖2. (4.10)

Hence the function (q, p) �→ |〈U(σpr(q, p))ηj , φ〉| is square integrable on � = V0 × O∗.
�

A few remarks are in order here.

1. Statement 1 of proposition 3.1 is a particular case of ours. It corresponds to the case
H0 = {(0, eS)} and σpr = IdG, the identity map G → G.

2. The above proof did not require U to be irreducible.
3. Assuming irreducibility of U and putting η

j

σpr(q,p) = U(σpr(q, p))ηj , the result in
proposition 4.1 can be restated by saying that the operator

Aσpr =
N∑

j=1

∫
�

dµ(q, p)
∣∣ηj

σpr(q,p)

〉〈
η

j

σpr(q,p)

∣∣
is bounded on H. We then have the following corollary which stems from lemma 10.3.2
and theorem 10.3.3 in [2].

Corollary 4.2. Assume in addition that U is induced from a UIR L of S0, and that the operator
F satisfies the invariance property (2.18). Then, for all other sections σ ′ of the form (2.9),
with

n(q, p) = n(p) ∀(q, p) ∈ � (4.11)

we have

Aσ ′ = Aσpr = c(σpr)IH (4.12)

where c(σpr) is a positive nonzero constant, and IH is the identity operator in H. In this
case, the existence of a discrete frame implies the existence of a tight continuous frame, both
generated by F, and indexed by �.

4.2. Discrete frames associated with an abstract admissible affine section

From here on, U is assumed to be induced from a UIR L of S0, and square integrable modulo
H0 and σ̂ . In this section, we show that there always exists a discrete frame associated with U.
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4.2.1. A constructive method. Take a set {ηj : j = 1, . . . , N} of linearly independent vectors
in H with compact supports Kj ⊂ Ok0 such that, for j = 1, . . . , N ,

• s0(p)[Kj ] ⊂ Ok0 for all p ∈ O∗,
• ψ(F(p)∗s0(p)[Kj ]) = Rj is a regular hyperparallelepiped in R

m, for all p,

• k0 ∈ ◦
Kj .

The first condition on the Kj , even though it seems strong, is realistic because, in most of the
cases encountered in the literature, the orbit O∗ is open and Ok0 = O∗. On the other hand, we
will see that, in the particular case of the principal section σpr, for instance, there is no need to
impose it. A concrete example of such supports is provided by S0-invariant sets.

Set O = ⋂N
j=1

◦
Kj and K = ⋃N

j=1 Kj . O is open and contains k0 and K is compact.
There exists {sν : ν = 0, . . . , N0} ⊂ S such that

O∗ =
⋃
τ∈I

N0⋃
ν=0

sτ sν[O]. (4.13)

On the other hand, consider the union of sets
⋃

p∈O∗ �(p)−1[O]. The collection is an open
covering of O∗, hence of each Kj . Hence, there exists, for each j , a finite subcovering
�j = ⋃

n∈�j ⊂N
�(pn)

−1[O] of each Kj . The set

�K = �1 ∪
N⋃

j=2

(
�j

∖⋃j−1
�=1��

) =
⋃

n∈�⊂N

�(pn)
−1[O]

provides a finite subcovering of K. Obviously, for each j, card �j � card �. Define next the
compact sets

Q′
j =

⋃
n∈�j

�(pn)[Kj ] and Q′ =
N⋃

j=1

Q′
j . (4.14)

Consider now an orthonormal basis {f j , j = 1, . . . , N} of K and assume that each ηj is of
the form

ηj = f j ⊗ ηχ
Kj

(4.15)

where η is a continuous complex valued function of L2(O∗, dν). For a general admissible
affine section, a straightforward computation using the local chart

(
Ok0 , ψ

)
shows that, for

k ∈ Ok0 ,

〈k, q̂ 〉 = 〈k, σ (p)F (p)q + σ(p)ϕ(p)〉 = 〈F(p)∗σ(p)−1[k], q〉 + 〈k, σ (p)ϕ(p)〉. (4.16)

For such a section, set

q
j

n,l = (
q

j

n,lκ

)m

κ=1 with q
j

n,lκ
= [measure(Rj,κ)]−12πlκ l = (lκ) ∈ Z

m

µj = volume(Rj )

and define

e
j

n,l(k) =
{

(µj )−1/2 e−i〈k,q̂
j

n,l〉 if k ∈ �(pn)[Kj ]
0 otherwise.

(4.17)

Note that, because of the specific choice of the Kj , if k ∈ �(pn)[Kj ], then σ(pn)
−1[k] ∈ Ok0 .

This implication could take the form of an equivalence when one requires each Kj to be
(globally) invariant under the action of S0. For instance, this means working with S0-invariant
supports. Such a treatment in the specific case of the Poincaré group in 1+3 dimensions can
be found in [4]. The proof is given in the appendix.
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Lemma 4.3. For n and j fixed and

ρn(k) =
∣∣∣∣dψ(σ(pn)

−1[k])

dν(k)

∣∣∣∣ |I(pn, σ (pn)
−1[k])| for k ∈ �(pn)[Kj ]

the set
{
e
j

n,l : l ∈ Z
m
}

is an orthonormal basis of L2(�(pn)[Kj ], ρn(k) dν(k)).

The main result of this part is the following theorem.

Theorem 4.4. The set{
η

j

τ,ν,n,l ≡ U(sτ sν�(pn)q̂
j

l,n, sτ sν�(pn))η
j : τ ∈ I ; ν = 0, . . . , N0;

n ∈ �; l ∈ Z
m; j = 1, . . . , N

}
is a (discrete) frame in H.

Proof. We have to show that, for all φ in H, there exist two real numbers A and B such that

0 < A‖φ‖2
H � A =

N∑
j=1

∑
τ∈I

N0∑
ν=0

∑
n∈�

∑
l∈Z

m

∣∣〈ηj

τ,ν,n,l , φ
〉
H

∣∣2 � B‖φ‖2
H. (4.18)

We first note that(
sτ sν�(pn)q̂

j

l,n, sτ sν�(pn)
) = (0, sτ sν)

(
�(pn)q̂

j

l,n,�(pn)
)

(4.19)〈
η

j

τ,ν,n,l , φ
〉
H

= 〈
U(�(pn)q̂

j

l,n,�(pn))η
j , U(0, sτ sν)φ

〉
H

=
∫
O∗

dν(k) e−i〈k,�(pn)q̂
j

l,n〉ηj (�(pn)
−1[k])†

× L(h0(�(pn)
−1, k)−1)−1(U(0, sτ sν)

−1φ)(k)

=
∫
O∗

dν(k) e−i〈�(pn)
−1[k],q̂ j

l,n〉ηj (�(pn)
−1[k])†

× L(h0(�(pn),�(pn)
−1[k]))−1(U(0, sτ sν)

−1φ)(k)

=
∫
O∗

dν(k) e−i〈k,q̂
j

l,n〉ηj (k)†L(h0(�(pn), k))−1(U(0, sτ sν)
−1φ)(�(pn)[k])

= (µj )1/2
∫
O∗

dν(k)e
j

l,n(k)〈(U(0,�(pn))η
j )

× (�(pn)[k]), (U(0, sτ sν)
−1φ)(�(pn)[k])〉K (4.20)

and

A =
∑

j,τ,ν,n,l

∣∣〈ηj

τ,ν,n,l , φ
〉
H

∣∣2

=
∑

j,τ,ν,n,l

µj

∣∣∣∣∫
O∗

dν(k)ρn(k)e
j

l,n(k)ρn(k)−1

×〈(U(0,�(pn))η
j )(�(pn)[k]), (U(0, sτ sν)

−1φ)(�(pn)[k])〉K
∣∣∣∣2

=
∑

j,τ,ν,n

µj

∫
O∗

dν(k)ρn(k)−1|〈(U(0,�(pn))η
j )

× (�(pn)[k]), (U(0, sτ sν)
−1φ)(�(pn)[k])〉K|2 (by Plancherel’s theorem)

=
∑
j,τ,ν

∑
n∈�

µj

∫
O∗

dν(k)ρn(k)−1

× |〈(U(0,�(pn))η
j )(�(pn)[k]), (U(0, sτ sν)

−1φ)(�(pn)[k])〉K|2. (4.21)
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From (4.21) we have

A �
∑
j,τ,ν

µj

∫
Kj

dν(k)ρn0(k)−1|η(k)|2|〈f j , (U(0, sτ sν)
−1φ)(k)〉K|2

(
because there exists n0 ∈ � such that pn0 = k0; implying that �

(
pn0

) = eS

+ the fact that
∑

n∈� . . . � (the term in n0)
)

�
∑
j,τ,ν

µj inf
Kj

ρn0(k)−1 inf
Kj

|η(k)|2
∫

O

dν(k)|〈f j , (U(0, sτ sν)
−1φ)(k)〉K|2

�
(

N
min
j=1

µj

)
inf
K

ρn0(k)−1 inf
K

|η(k)|2
∑
τ,ν

∫
O

dν(k)

×
N∑

j=1

|〈f j , L(h0((sτ sν)
−1, k))φ((sτ sν)

−1[k])〉K|2

�
(

N
min
j=1

µj

)
inf
K

ρn0(k)−1 inf
K

|η(k)|2
∑
τ,ν

∫
O

dν(k)‖φ((sτ sν)
−1[k])‖2

K

�
(

N
min
j=1

µj

)
inf
K

ρn0(k)−1 inf
K

|η(k)|2
∑
τ,ν

∫
sτ sν [O]

dν(k)‖φ(k)‖K

(k �→ sτ sν[k] + invariance of the measure)

�
(

N
min
j=1

µj

)
inf
K

ρn0(k)−1 inf
K

|η(k)|2
∫

⋃
τ∈I

⋃N0
ν=0 sτ sν [O]=O∗

dν(k)‖φ(k)‖2
K(

because
∑
τ,ν

∫
sτ sν [O]

. . . �
∫

⋃
τ∈I

⋃N0
ν=0 sτ sν [O]

. . .

)

�
(

N
min
j=1

µj

)
inf
K

ρn0(k)−1 inf
K

|η(k)|2‖φ‖2
H

and

A �
∑

j,τ,ν,n

µj

∫
Kj

dν(k)ρn(k)−1‖(U(0,�(pn))η
j )(�(pn)[k])‖2

K

× ‖(U(0, sτ sν)
−1φ)(�(pn)[k])‖2

K (by the Schwarz inequality)

�
∑

j,τ,ν,n

µj sup
Kj

ρn(k)−1
∫

�(pn)[Kj ]
dν(k)|η(�(pn)

−1[k])|2‖(U(0, sτ sν)
−1φ)(k)‖2

K

(k �→ �(pn)
−1[k] + invariance of the measure + unitarity of U )

�
N∑

j=1

µj

(∑
n∈�

sup
Kj

ρn(k)−1

)
sup
Kj

|η(k)|2
∑
τ,ν

∫
Q′

j

dν(k)‖(U(0, sτ sν)
−1φ)(k)‖2

K

� N

(
N

max
j=1

µj

) (∑
n∈�

sup
K

ρn(k)−1

)
sup
K

|η(k)|2
∑
τ,ν

∫
Q′

dν(k)‖φ(sτ sν[k])‖2
K

(because Kj ⊂ K and Q′
j ⊂ Q′)

� N

(
N

max
j=1

µj

) (∑
n∈�

sup
K

ρn(k)−1

)
sup
K

|η(k)|2
∑
τ,ν

∫
sτ sν [Q′]

dν(k)‖φ(k)‖2
K

(k �→ (sτ sν)
−1[k] + invariance of the measure)



11830 A L Hohouéto et al

� N

(
N

max
j=1

µj

) (∑
n∈�

sup
K

ρn(k)−1

)
sup
K

|η(k)|2
∑
τ,ν

∫
sτ sν [Q′]

dν(k)‖φ(k)‖2
K

� N

(
N

max
j=1

µj

) (∑
n∈�

sup
K

ρn(k)−1

)
sup
K

|η(k)|2
∑
τ∈I

N0∑
ν=0

∫
sτ [

⋃N0
ν=0 sν [Q′]]

dν(k)‖φ(k)‖2
K(

because sν[Q′] ⊂ ⋃N0
ν=0 sν[Q′]

)
� (N0 + 1)N

(
N

max
j=1

µj

) (∑
n∈�

sup
K

ρn(k)−1

)
sup
K

|η(k)|2

×
d∑

r=1

∑
τ∈Ir

∫
sτ [

⋃N0
ν=0 sν [Q′]]

dν(k)‖φ(k)‖2
K(

since
⋃N0

ν=0 sν[Q′] is compact, it follows from part 2 of lemma 3.2

that there exists a finite partition (X Ir
, r = 1, . . . , d) of X I such that

sτ

[ ⋃N0
ν=0 sν[Q′]

] ⋂
sτ ′

[ ⋃N0
ν=0 sν[Q′]

] = ∅,∀τ �= τ ′ ∈ Ir

)
� (N0 + 1)N

(
N

max
j=1

µj

) (∑
n∈�

sup
K

ρn(k)−1

)
sup
K

|η(k)|2

×
d∑

r=1

∫
⋃

τ∈Ir
sτ [

⋃N0
ν=0 sν [Q′]]

dν(k)‖φ(k)‖2
K

� (N0 + 1)N

(
N

max
j=1

µj

) (∑
n∈�

sup
K

ρn(k)−1

)
sup
K

|η(k)|2
d∑

r=1

∫
O∗

dν(k)‖φ(k)‖2
K(

because
⋃

τ∈Ir
sτ

[ ⋃N0
ν=0 sν[Q′]

] ⊂ O∗)
� d(N0 + 1)N

(
N

max
j=1

µj

)(∑
n∈�

sup
K

ρn(k)−1

)
sup
K

|η(k)|2‖φ‖2
H.

The inequalities (4.18) have thus been demonstrated with the lower and upper bounds

A =
(

N
min
j=1

µj

)
inf
K

ρn0(k)−1 inf
K

|η(k)|2

B = d(N0 + 1)N

(
N

max
j=1

µj

) (∑
n∈�

sup
K

ρn(k)−1

)
sup
K

|η(k)|2.
(4.22)

�

In the particular case of the principal section σpr, the construction is the same but
we proceed under simpler considerations. Since s0(p) = eS and θ(p) = 0̃, we have
�(pn) = σ(pn) and ρn(k) ≡ ρ(k) = |Dkψ |. The bounds of the frame obtained are then

A =
(

N
min
j=1

µj

)
inf
K

ρ(k)−1 inf
K

|η(k)|2

B = d(N0 + 1)N

(
N

max
j=1

µj

)
Card � sup

K

ρ(k)−1 sup
K

|η(k)|2.

4.2.2. Application to the Euclidean group in two dimensions. We will now apply this
construction to the two-dimensional Euclidean group, following [2] and [12]. The group is
E(2) = R

2
� SO(2) and its elements are of the form (x, α), identified with (x, rα), where
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x ∈ R
2 and rα is the usual 2 × 2 rotation matrix of angle α ∈ [0, 2π ]. The orbits of points

in R
2 are circles. We fix the element k0 = (1, 0) and take O∗ as the unit circle S1 while

S0 = {I2}. We use the canonical parametrization ψ(p) = (cos p, sin p), p ∈ (−π, π), of the
unit circle and the coordinatization

(q, p) ∈ � � R × S1 � T ∗S1 = {(x, p) ∈ R × S1 : x1p1 + x2p2 = 0}.
The section is given by σ(q, p) = ((−q sin p, q cos p), rp). The invariant measure on � is
dq dp and the representation of E(2) is

(U(x, α)φ)(θ) = ei〈x,ψ(θ)〉φ(θ − α) φ ∈ L2(S1, dk).

A function η ∈ L2(S1, dk) is admissible if and only if the following three conditions are
fulfilled, 

(1) supp η ⊂ (−π/2, π/2),

(2) η is even, η(−θ) = η(θ),

(3)
∫ π/2
−π/2

|η(θ)|2
cos θ

dθ < ∞.

The family of coherent states ηq,p = U(σ(q, p))η leads to a resolution of the identity.
For this group, the construction described can be performed when one considers the

uniform lattices

XN = {sτ = r2πτ/N : τ = 0, 1, . . . , N − 1}, N arbitrary in N

of SO(2). Then, using the open interval J = (−π/2, π/2), we can write

S1 =
N−1⋃
τ=0

⋃
ν∈{0,1}

sτ sν[J ] (4.23)

where sν = rνπ/N , ν = 0, 1. A finite covering of [−π/2, π/2] (hence of supp η) is obtained
from the set {σ(p)−1[J ] : p ∈ S1} when we take (pn)n=−1,0,1 = (nπ/N)n=−1,0,1. Finally, a
frame is obtained when we consider the family

F = {ητ,ν,n,l = U(sτ sνσ (pn)̂qn,l, sτ sνσ (pn))η : τ = 0, . . . , N − 1;
ν = 0, 1; n = −1, 0, 1; l ∈ Z}

where {
q̂n,l = (−ql sin pn, ql cos pn)

ql = 2πl l ∈ Z
and σ(pn) = rpn

.

Let us remark that sτ sνσ (pn) = rθτ,ν,n
, with

θτ,ν,n = 2τπ

N
+

νπ

N
+

nπ

N
= (2τ + ν + n)π

N
τ = 0, . . . , N − 1 ν = 0, 1 n = −1, 0, 1

and

sτ sνσ (pn)̂qn,l = −ql

(
sin(π − θτ,ν,n − pn)

cos(π − θτ,ν,n − pn)

)
.

Then the frame vectors are of the form

ητ,ν,n,l(θ) = eiql sin(θ−θτ,ν,n−pn)η(θ − θτ,ν,n)

= e2iπl sin(θ−(2τ+ν+2n)π/N)η

(
θ − (2τ + ν + n)π

N

)
or, more concisely,

ηn,m,l(θ) = e2iπl sin(θ−(n−m)π/N)η

(
θ − (n − 1)π

N

)
m ∈ N2 n ∈ N2N+1

where we have replaced 2τ + ν + n by n − 1 and set Nd = {0, 1, . . . , d}.
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5. Remarks and discussion

(1) In general, considering the Iwasawa decomposition KAN of S, with K being the maximal
compact subgroup, we have S0 ⊂ K ⊂ S. In the case where S0 = K and XI is a discrete
group of transformations of O∗, there is an alternative way to construct the frame generator
[13, 14].

Let us consider the canonical projections

π : S → O∗ π1 : S → XI\S and π2 : O∗ → XI\O∗

and form the compact set of double equivalence classes modulo (XI , K)

XI\S/K � C/K � XI\NA � XI\O∗.

Then, via the canonical projection π2 : O∗ → XI\O∗, there is a compact subset Q′ in O∗ such
that

π2(Q′) = XI\O∗ and O∗ =
⋃
τ∈I

sτ [Q′].

In this way, a second frame generator (XI ,Q′) is determined. In fact, it can be easily shown
that the two frame generators are identical. Consider the commutative diagram

S = χIC
π−−−−−−→ O∗ = S/K

| || |π1 ↓ ↓
π2

χI\S
π3−−−−−−→ χI\O∗ = χI\H/K

.

It enables us to write

π2(Q) = XI [Q] ⊂ XI [Q′] = π2(Q′)

and this implies that Q ⊂ Q′. The first thing we can deduce a priori is that the size (by
cardinality) of the frame generated by (XI ,Q′) is greater than that of the frame generated by
(XI ,Q). Now, the problem hinges upon the choice of representatives of equivalence classes.
A deeper analysis makes this sharper. Let C0 be a fundamental domain of XI in S. Then we
have

π3 ◦ π1(C0) = XI\O∗ = XI [Q′] = π2(Q′)
= π2 ◦ π(C0) = π2(C0K)

⊂ π2 ◦ π(C) = π2(CK) = π2(Q).

With this we have Q′ ⊂ Q. Thus, Q = Q′ and it is clear that the two frame generators (XI ,Q)

and (XI ,Q′) are in fact identical.
(2) The results obtained in this paper open up new possibilities, by enlarging the class of

the manifolds on which one could analyse signals. In addition, they show that the construction
of Aniello et al remains applicable (with slight modifications) to general semidirect product
groups with induced UIRs, which are square integrable modulo a subgroup. However, some
questions remain open.

• A further extension is possible, since here we only consider the case where the group S is
semisimple and connected. The only effect of this assumption was to provide a uniform
lattice of G. In fact, there is no need for the discrete subset taken in G to have a group
structure. As a confirmation, all the known constructions in the literature have been done
with subsets without a group structure, or even a definite structure.
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• We have not discussed here the density problem of the set
{(

q
j

n,l, pn) : j = 1, . . . , N; l ∈
Z

m; n ∈ �
}

in � in connection with the Shannon sampling theorem.

• In view of the above, it would be interesting to check the efficiency of the frames for
numerical computations. Even formally, it would be difficult to say anything about the
commonly used efficiency test |B/A − 1| � 1, since the frame bounds found in (4.22)
depend, to a certain extent, on the quality (precision) of the approximations performed.
However, in the case where Kj = K,∀j , the estimation of B/A gives the indication that
good candidates for the choice of η should be band-limited functions with thin widths
[15].

• Again, for implementation purposes, it would be useful to characterize completely the
uniform lattice XI and the quotient space S/XI . We have exhibited a concrete example in
this paper for the Euclidean group E(2), but for other groups, such as the Poincaré group
P↑

+ (1, 3), the exercise is less obvious [9]. For general semisimple, connected Lie groups,
there are straightforward examples of discrete subgroups which belong to the centre of the
group. But they are too small. Finding sufficiently large and nontrivial discrete subgroups
of that kind of groups is a difficult problem.

Note that the covering of S1 in formula (4.23) is not optimal, in the sense that we did
not care to control the extent of the overlaps of the shifted copies of J . As is well known,
this is the main source of the redundancy contained in the reconstruction formulae.

Appendix. Proof of lemma 4.3

(i) The vectors
{
e
j

n,l

}
are pairwise orthogonal and of norm 1.

〈
e
j

n,l, e
j

n,l′
〉 =

∫
O∗

dν(k)ρn(k)e
j

n,l(k)e
j

n,l′(k)

= (µj )−1
∫

�(pn)[Kj ]
dν(k)ρn(k) exp

[−i
〈
F(pn)

∗σ(pn)
−1[k], qj

n,l′ − q
j

n,l

〉]
= (µj )−1

∫
s0(pn)[Kj ]

dν(k)ρn(σ (pn)[k]) exp
[−i

〈
F(pn)

∗k, q
j

n,l′ − q
j

n,l

〉]
(k �→ σ(pn)[k] + measure invariance)

= (µj )−1
∫

F(pn)∗s0(pn)[Kj ]
dν(k)

m(F (pn)
∗−1k)

m(k)
|I(pn, F (pn)

∗−1k)|−1

× ρn(σ (pn)[F(pn)
∗−1k]) exp

[−i
〈
k, q

j

n,l′ − q
j

n,l

〉]
(admissibility of σ̂ and k �→ F(pn)

∗−1k)

= (µj )−1 exp
[−i

〈
k0, q

j

n,l′ − q
j

n,l

〉]
×

∫
F(pn)∗s0(pn)[Kj ]

dν(k)
m(F (pn)

∗−1k)

m(k)
|I(pn, F (pn)

∗−1k)|−1

× ρn(σ (pn)[F(pn)
∗−1k]) exp

[
−i2π

m∑
κ=1

[measure(Rj,κ)]−1(l′κ − lκ )ψ(k)κ

]

= (µj )−1 exp
[−i

〈
k0, q

j

n,l′ − q
j

n,l

〉] ∫
Rj

dx

∣∣∣∣dψ(k)

dν(k)

∣∣∣∣−1
m(F(pn)

∗−1k)

m(k)

× |I(pn, F (pn)
∗−1k)|−1ρn(σ (pn)[F(pn)

∗−1k])
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× exp

[
−i2π

m∑
κ=1

[measure(Rj,κ )]−1(l′κ − lκ )xκ

]
(by the change k �→ ψ−1(x))

= (µj )−1 exp
[−i

〈
k0, q

j

n,l′ − q
j

n,l

〉] ∫
Rj

dx

× exp

[
−i2π

m∑
κ=1

[measure(Rj,κ )]−1(l′κ − lκ )xκ

]
(

because ρn(σ (pn)[F(pn)
∗−1k]) = |I(pn, F (pn)

∗−1k)|
∣∣∣∣dψ(F(pn)

∗−1k)

dν(F (pn)∗−1k)

∣∣∣∣
)

= exp
[−i

〈
k0, q

j

n,l′ − q
j

n,l

〉]
δl,l′ .

(ii) The set is total.
For φ ∈ L2(�(pn)[Kj ], ρn(k) dν(k)) and l ∈ Z

m, using similar arguments as above, we
have〈
e
j

n,l, φ
〉 =

∫
O∗

dν(k)ρn(k)e
j

n,l(k)φ(k)

= (µj )−1/2
∫

�(pn)[Kj ]
dν(k)ρn(k) exp[−i〈σ(pn)

−1[k], ϕ(pn)〉]

× exp
[
i
〈
F(pn)

∗σ(pn)
−1[k], qj

n,l

〉]
φ(k)

= (µj )−1/2
∫

s0(pn)[Kj ]
dν(k)ρn(σ (pn)[k]) exp[−i〈k, ϕ(pn)〉]

× exp
[
i
〈
F(pn)

∗k, q
j

n,l

〉]
φ(σ(pn)[k])

= (µj )−1/2
∫

F(pn)∗s0(pn)[Kj ]
dν(k)

m(F (pn)
∗−1k)

m(k)
|I(pn, F (pn)

∗−1k)|−1

× ρn(σ (pn)[F(pn)
∗−1k]) exp[−i〈F(pn)

∗−1k, ϕ(pn)〉]
× exp

[
i
〈
k, q

j

n,l

〉]
φ(σ(pn)[F(pn)

∗−1k])

= exp
[
i
〈
k0, q

j

n,l

〉]
(µj )−1/2

∫
F(pn)∗s0(pn)[Kj ]

dν(k)
m(F (pn)

∗−1k)

m(k)

× |I(pn, F (pn)
∗−1k)|−1ρn(σ (pn)[F(pn)

∗−1k]) exp
[−i

〈
n∗

0,F (pn)∗−1k, ϕ(pn)
〉]

× exp

[
i2π

m∑
κ=1

[measure(Rj,κ )]−1lκψ(k)κ

]
φ(σ(pn)[F(pn)

∗−1k])

(
because V ∗ = V ∗

0 ⊕ N∗
0 � F(pn)

∗−1k = v∗
0,F (pn)∗−1k + n∗

0,F (pn)∗−1k

)
= exp

[
i
〈
k0, q

j

n,l

〉]
(µj )−1/2

∫
Rj

dx exp
[−i

〈
n∗

0,F (pn)∗−1ψ−1(x), ϕ(pn)
〉]

× exp

[
i2π

m∑
κ=1

[measure(Rj,κ )]−1lκxκ

]
φ(σ(pn)[F(pn)

∗−1ψ−1(x)]).
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Thus,〈
e
j

n,l, φ
〉 = 0 ∀l ∈ Z

m

iff exp
[−i

〈
n∗

0,F (pn)∗−1ψ−1(x), ϕ(pn)
〉]
φ(σ(pn)[F(pn)

∗−1ψ−1(x)]) = 0

for a.e. x ∈ Rj

iff φ(σ(pn)[F(pn)
∗−1ψ−1(x)]) = 0 for a.e. x ∈ Rj

iff φ(k) = 0 for a.e. k ∈ �(pn)[Kj ]. �
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[9] Hohouéto A L 1999 On some discrete relativistic frames PhD Thesis Univ. Nat. du Bénin, Abomey-Calavi

[10] Gilmore R 1974 On properties of coherent states Rev. Mex. Fis. 23 143–87
[11] Perelomov A M 1986 Generalized Coherent States and Their Applications (Berlin: Springer)
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